

DYN@MO Summer University 2014

14th May 2014

Universitat de les Illes Balears, Palma de Mallorca

Jordi Perdiguero García, Universitat Autònoma de Barcelona

Index

- Introduction
- Advantages and disadvantages of electric vehicles
- Main (economic) barriers of electric vehicles
 - The Recharge network
 - Demand
 - Level of R&D
 - Programmes of sustainable road mobility
- And, with the crisis?
- Some conclusions

Introduction

- Increase in oil prices (permanent)
- Reduction in the manufacturing cost
- Increases battery life
- Concern over climate change

The EV as an alternative to ICE

- Measures to promote electric vehicles by different public bodies
- The aim of the presentation is to review the main (economic) barriers to the introduction of electric vehicles and main policy measures to overcome

Advantages and disadvantages of electric vehicles

- Advantages
 - Greater energy efficiency (Ahman, 2001)
 - Reduction in greenhouse gas emissions
 - Depends on the technology mix in electricity generation (Hadley and Tsvetkova, 2009)
 - Improved air quality (in cities) and noise pollution
- Disadvantages
 - More expensive than ICE (at least buying)
 - Low demand
 - Low reduction of greenhouse gas emissions

Main (economic) barriers of electric barriers

Need a charging network

- Different types of recharge:
 - Level 1: Slow recharge at home (500-2500\$)
 - Level 2: Fast recharge (shopping centers, hypermarkets,...) (2000-8000\$)
 - Level 3: Hyper-fast (like a petrol station) (40000-75000\$)
- Is the "swapping" a viable alternative?
- Elements to consider in a charging network
 - Information flow (GPS, mobile phones,...)
 - Standardization
 - Smart grid
 - Cost of recharging points and electricity prices, is feasible?

Need a charging network

- What has been done since public policy?
- Direct public subsidies for slow recharge points
 - USA: 2000\$ to electric vehicle owners and public networks
 - Europe: UK (2010), France (2012), Italy (2012), Spain (2012) Holland (2012)
 - Japan: private firm association CHAdeMo (Charge Move), formed by Toyota, Nissan, Mitsubishi, Fuji Heavy Industry and Tokyo Electric Power Company
- Bernardo, Borrell and Perdiguero (2014): A network of super-fast recharge is economically viable if there is sufficient demand (penetration of electric vehicles around 3%)

Stimulate demand for electric vehicle

- The purchase price is higher than an ICE vehicle (even after subsidies). The cost of the battery is the key.
- The public sector try to reduce the purchase price
- USA: Gallagher and Muehlegger (2011), 2.000\$ between 2000 and 2005; and a variable credit (650-3.150\$) from 2006, limited to 60.000 units.
- Canada: Government of Ontario (2010) subsidy between 4.895 and 8.321\$
- Europe: 1) Exempts of registration tax 2) Exempts of road tax 3) Direct subsidy (1.400-6.000€) 4) Deductions on income tax
- Other countries: Israel (inverse relationship between tax level and the degree of contamination), China (7.300\$), Japan (1.000.000¥) or Delhi (15% discount)...

Stimulate demand for electric vehicle

- Although the articles indicate a strong impact (Diamond (2009) reported an increase of 18% for USA, and Chandra et al. (2010) 26% for Canada), I am skeptical
- "Cash for Clunkers" like example
- But, there are alternatives:
 - Tighten pollution standards for vehicle manufacturers (Transport and Environment, 2009)
 - Increase taxes on fuel, particularly in countries with low taxes (Spain, United States,...)
 - Encourage vehicle fleets (taxis, buses, delivery companies, mail firms, ...)
 - Battery leasing (Renault)
- The key is decrease the manufacturing cost

R&D policies

- Batteries: size, weight and energy density
- International Energy Agency (2008): Lithium batteries have between 2012-2015 a cost of \$ 300-600 per kWh. A 20kWh battery between \$ 6,000-12,000.
- USA: American Recovery and Reinvestment Act (ARRA), Partnership for a New Generation of Vehicles (PNGV), FreedomCAR, Advanced Research Projects Agency (ARPA-E)
- Europe: JOULE I and II to among others European Electric Road Vehicle Association (AVERE) or Association of Cities Interested in the Use of Electric Vehicles (CITELEC)

R&D policies

- Japan: Ministry of International Trade and Industry very active since 1971 (Ahman, 2006)
- China: 1.46 billion dollars to help the auto industry carry out technological innovation projects (Brown et al., 2010)
- Increased collaboration between the producers of batteries and vehicles
- Two additional elements: reliability and recycling

Programmes of sustainable road mobility

- A reduction in the time and financial costs of travel
 - Permission for electric vehicles to use the High Occupancy Vehicle (HOV) lanes
 - Differentiation in tolls charged according to levels of contamination
- Establishment of "Park & Ride" sites at interchanges
 - Meier-Eisenmann et al (2001) Swiss canton of Ticino (82% of four-wheeled electric vehicles use the parking areas reserved specifically for them)

And, with the crisis?

- Difficult to meet the programs, with a high cost, promised
- Difficult to increase spending in the future
- Greater scope for measures that do not involve spending
 - Stricter environmental regulation
 - Stricter pollution standards for ICE
 - Increase fuel taxes ("green taxes")
- Collaboration between companies and governments (Japan as an example)
- Distribution of risks and benefits

Conclusions

- Electric vehicles can be an alternative to ICE
- Technological development as a key to the introduction of electric vehicles (public support)
 - Lower costs of the vehicle => Increased demand=> viable network recharging
- Inefficiency of direct subsidies for slow recharge points or purchase green vehicles
- With the crisis, more difficult to implement expenditure policies
- Collaboration between companies and public administration

Thank you!

Jordi Perdiguero García

Contact Details Universitat Autònoma de Barcelona Departament d'Economia Aplicada Edifici B, Campus de la UAB 08193 Bellatera (Cerdanyola del Vallès) jordi.perdiguero@uab.cat http://www.civitas.eu

THE CIVITAS INITIATIVE IS CO-FINANCED BY THE EUROPEAN UNION